TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	University of Anbar		
2. University Department/Centre	College of Computer Science and Information Technology – Computer Science Department		
3. Course title/code	Logic Design 2		
4. Programme(s) to which it contributes	Bachelors of Information System		
5. Modes of Attendance offered	Electronic attendance		
6. Semester/Year	Second semester 2021-2022		
7. Number of hours tuition (total)	48		
8. Date of production/revision of this	2021/09/20		
specification			
9. Aims of the Course			
• The student should understand encoder, decoder and multiplexers			
The student should understand synchronous logic circuit			
• The student should understand flip-flops and how to use them			
• The student should understand registers and their types			
• The student should understand counters and their types			
The student should understand ROM and PLA implementation			

10. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Knowledge and Understanding

A1. The student should understand encoder, decoder and multiplexers

A2. The student should understand flip-flops and how to use them.

A3. The student should understand registers and their types.

A4. The student should understand counters and their types.

A5. The student should understand ROM and PLA implementation.

B. Subject-specific skills

B1. B2.

B3.

Teaching and Learning Methods

The student should use utilities in the lab to apply scientific experiment

- The ability to design a logic circuit.

Assessment methods

Notes	Date	%	Assessment	
	6 th week	10%	First Month exam	1
	10 th week	10%	Second Month exam	2
	16 th week	10%	Third Month exam	3
	All weeks	5%	Attendance and HW	4
	At end of each experiment	15%	Reports and Lab exam	5
	End of semester	50%	Final exam	6
		100	Sum	
		%		

C. Thinking Skills

C1.

C2.

C3.

C4.

Teaching and Learning Methods

Assessment methods

D. General and Transferable Skills (other skills relevant to employability and personal development)

D1.

D2.

D3.

D4.

11. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
1	2 Theory + 2 Practical		Synchronous logic gates		
2	2 Theory + 2 Practical		Adder and subtractor circuits		
3	2 Theory + 2 Practical		Comparator circuits		
4	2 Theory + 2 Practical		Encoders and multiplexers		
5	2 Theory + 2 Practical		Multiplexers		
6	2 Theory + 2 Practical		First month exam		
7	2 Theory + 2 Practical		Flip-flops		
8	2 Theory + 2 Practical		SR flip flop and j k flip flop		
9	2 Theory + 2 Practical		T flip flop and D flip flop		
10	2 Theory + 2 Practical		Second month exam		
11	2 Theory + 2 Practical		Registers design		
12	2 Theory + 2 Practical		Counters design		
13	2 Theory + 2 Practical		ROM		
14	2 Theory + 2 Practical		PLA		
15	2 Theory + 2 Practical		State plan		
16	2 Theory +		Final exam		

2 Practical			
12. Infrastructure			
Required reading: · CORE TEXTS · COURSE MATERIALS · OTHER	 Lecture Home Case st Weekly 	es works tudy in the Lab y reports	
Special requirements (include for example workshops, periodicals, IT software, websites)	- "Digita and Mid - Fundan	l Design" 4 th Edit chael D. Ciletti nentals of logic de	ion by M. Morris Mano esign by J. Roth
Community-based facilities (include for example, guest Lectures , internship , field studies)			

13. Admissions		
Pre-requisites	Fundamental of English and Mathematics and Logic design 1 course.	
Minimum number of students	25	
Maximum number of students	40	

Dr. Muntaser A. Salman